
AMSC/CMSC 460 Computational Methods

Exam 2, Due Tuesday April 14, 2015 Solution

This exam is now take-home due to power outage on April 7. Please read carefully with
the instructions below.

Show all work clearly and in order, and circle your final answers. Justify your answers
algebraically whenever possible. Use no books, calculators, computers, internet,
communication with others, etc, except a formula sheet (A4 one-sided) prepared
by yourself. Use no more than 80 minutes to finish the exam.

1. (20 points) Mark each of the following statements T (True) or F (False).
You will get 4 points for each correct answer, -1 points for each wrong answer, and 0
point for leaving it blank.

(a) Lagrange interpolations on equally distributed nodes have the best perfo-
mance (in the sense of minimizing L∞ error) when the number of nodes n is large.

Solution: False. Runge’s phenomenon occurs for interpolant with equally dis-
tributed nodes.

(b) A natural cubic spline is a C2 function.

Solution: True. The second derivatives matches at the interface.

(c) Newton-Cotes type integrations use equally spaced nodes.

Solution: True.

(d) Suppose s1(x) is a linear interpolating spline of f(x) on equally distributed

nodes in [a, b]. Then,
∫ b
a
s1(x)dx defines a composite trapezoid rule to approximate∫ b

a
f(x)dx.

Solution: True. Newton-Cotes type quadrature rule is to use the integrand of
Lagrange polynomial.

(e) A Gauss quadrature with n nodes has higher algebraic accuracy than a
Newton-Cotes type quadrature with n nodes.

Solution: True. For Gauss quadrature, the algebraic accuracy is 2n − 1. For
Newton-Cotes, the algebraic accuracy is n− 1 or n, which is smaller.
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2. Let f(x) = (1 + x)−1, for x ∈ [0, 1].

(a) (8 points) Find a cubic polynomial p3(x) which interpolates f such that

p3(0) = f(0), p′3(0) = f ′(0), p′′3(0) = f ′′(0), and p3(1) = f(1).

Solution: Use Newton’s representation, we get

x0 = 0 f0 = 1
f01 = f ′(0) = −1

x1 = 0 f1 = 1 f012 = f ′′(0)
2

= 1

f12 = f ′(0) = −1 f0123 = f123−f012
x3−x0 = −1

2

x2 = 0 f2 = 1 f123 = f23−f12
x3−x1 = 1

2

f23 = f3−f2
x3−x2 = −1

2

x3 = 1 f3 = 1
2

Therefore, p3(x) = 1− x+ x2 − 1
2
x3.

(b) (8 points) Obtain an error bound uniformly in [0, 1]. Namely, find an upper bound
of ‖f − p3‖L∞([0,1]).

Solution: The point-wise error formula reads

f(x)− p3(x) =
f ′′′′(ξ)

4!
π4(x), π4(x) = x3(x− 1).

For uniform estimate, we get

‖f − p3‖L∞([0,1]) ≤
maxξ∈[0,1] |f ′′′′(ξ)|

4!
max
x∈[0,1]

|π4(x)|.

In this case, f ′′′′(ξ) = − 24

(1 + ξ)5
⇒ max

ξ∈[0,1]
|f ′′′′(ξ)| ≤ 24.

For maxx∈[0,1] |π4(x)|, as π′4(x) = 4x3 − 3x2, the stationary points of π(x) for
x ∈ [0, 1] is x = 3

4
. Compare with the endpoints: π4(

3
4
) = 27

256
, π4(0) = π4(1) = 0.

Therefore, maxx∈[0,1] |π4(x)| = 27
256

.

We conclude that ‖f − p3‖L∞([0,1]) ≤ 24
4!
· 27
256

= 27
256

.

(c) (3 points) sL(x) is the linear interpolating spline for f , on nodes {xi}5i=0, where
xi = i/5. Let {ϕi(x)}5i=0 be hat functions with respect to the nodes. We can

express sL(x) =
m∑
k=0

akϕk(x). Find a0, · · · , a5.
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Solution: As hat function φi(xj) =

{
1 i = j

0 i 6= j
, we get ai = f(xi). Hence, it is

easy to get

a0 = 1, a1 =
5

6
, a2 =

5

7
, a3 =

5

8
, a4 =

5

9
, a5 =

1

2
.

(d) (6 points) (*) Find an error bound of ‖f − sL‖L∞([0,1]).

Solution: For x ∈ [xi−1, xi], the approximation is a linear interpolation, where
error formula says

|f(x)−sL(x)| ≤
maxξ∈[xi−1,xi] |f ′′(ξ)|

2
max

x∈[xi−1,xi]
|π2(x)|, π2(x) = (x−xi−1)(x−xi).

It is easy to obtain max |π2(x)| = |π2(xi−1+x1
2

)| = h2

4
, where h = xi − xi−1 = 1

5
.

And maxx∈[0,1] |f ′′(x)| = 2. Therefore,

‖f − sL‖L∞([0,1]) ≤
2

2
· h

2

4
=

1

100
.
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3. (20 points) Let f(x) = x4. Find the quadratic polynomial p2(x) which minimizes the
following functional ∫ ∞

0

(f(x)− p2(x))2e−xdx.

You do not have to simplify your answer.

Hint: To ease the computational load, you can use the following identity,∫ ∞
0

xke−xdx = k!, for all integers k ≥ 0.

Solution: Denote 〈·, ·〉 be L2 inner product with weight e−x in [0,∞), namely

〈f, g〉 =

∫ ∞
0

f(x)g(x)e−xdx.

Then, the problem becomes a least square approximation with respect to the inner
product 〈·, ·〉.
Take Laguerre polynomials {Ln(x)}, and write p2(x) =

∑2
i=0 αiLi(x). The coeffi-

cients satisfy the linear system〈L0, L0〉 〈L0, L1〉 〈L0, L2〉
〈L1, L0〉 〈L1, L1〉 〈L1, L2〉
〈L2, L0〉 〈L2, L1〉 〈L2, L2〉

α0

α1

α2

 =

〈L0, f〉
〈L1, f〉
〈L2, f〉

 .

By orthogonality of Laguerre polynomials with respect to the inner product, we get
the matrix is an identity matrix. We are left to calculate

α0 = 〈L0, f〉 =

∫ ∞
0

x4e−xdx = 4! = 24,

α1 = 〈L1, f〉 =

∫ ∞
0

(1− x)x4e−xdx = 4!− 5! = −96,

α2 = 〈L2, f〉 =

∫ ∞
0

(
1

2
x2 − 2x+ 1

)
x4e−xdx =

6!

2
− 2 · 5! + 4! = 144.

Therefore, p3(x) = 24− 96(1− x) + 144
(
1
2
x2 − 2x+ 1

)
.
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4. Simpson’s 3/8 rule states the following. Let {xi}3i=0 be equally distributed nodes in [a, b],
namely xi = a+ i(b− a)/3. Then,∫ b

a

f(x)dx ≈ I3[f ] :=
b− a

8
(f(x0) + 3f(x1) + 3f(x2) + f(x3)) .

The corresponding error formula reads

E =

∫ b

a

f(x)dx− I3[f ] = −(b− a)5

6480
f (4)(ξ), where ξ ∈ (a, b).

(a) (5 points) What is the algebraic accuracy of the Simpson’s 3/8 rule.

Solution: From the error formula, for all f ∈ P3, f
(4)(x) ≡ 0 and therefore

E ≡ 0. So, algebraic accuracy is 3.

(b) (5 points) Write a composite 3/8 Simpson’s rule on
∫ 1

0
f(x)dx using 7 equally dis-

tributed nodes {xi}6i=0, where xi = i/6.

Solution:∫ 1

0

f(x)dx ≈ 1

16
[f(0)+3f(1/6)+3f(1/3)+2f(1/2)+3f(2/3)+2f(5/6)+f(1)].

(c) (10 points) Suppose max0≤x≤1 |f (4)(x)| = 1. Give an upper bound on the error for
the composite rule in (b).

Solution: The composite rule uses Simpson’s 3/8 rule in [0, 1/2] and [1/2, 1].
For each interval, we can apply the error formula and get

|Ei| ≤
(1/2)5

6480
· 1.

Therefore, the total error is |E1 + E2| ≤ 2 · (1/2)
5

6480
= 1

103680
.
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5. We approximate the integrand
∫ 1

−1 f(x)dx by a Gauss quadrature rule Q[f ]:∫ 1

−1
f(x)dx ≈ Q[f ] =

n∑
i=0

wif(xi),

where the n+ 1 nodes {xi}ni=0 and weights {wi}ni=0 are to be determined.

(a) (5 points) What is the minimum n to guarantee Q[f ] is exact for all f ∈ P9.

Solution: Given n, the algebraic accuracy for Gauss quadrature rule is 2n+ 1.
To ensure 2n+ 1 ≥ 9, the minimum n = 4.

(b) (10 points) Take n = 2. Find the nodes {xi}2i=0 and weights {wi}2i=0 of the quadra-
ture rule that maximizes the algebraic accuracy.

Solution: We use Legendre polynomial {Pi(x)}. From the recursive formula,
we get

P0(x) = 0, P1(x) = x, P2(x) =
3

2
x2 − 1

2
, P3(x) =

1

2
x(5x2 − 3).

The nodes are roots for P3. Hence, x0 = −
√

3
5
, x1 = 0, x2 =

√
3
5
. For the

weights, we solve the following linear systemP0(x0) P0(x1) P0(x2)
P1(x0) P1(x1) P1(x2)
P2(x0) P2(x1) P2(x2)

w0

w1

w2

 =

〈P0, P0〉
0
0

 ⇒

w0

w1

w2

 =

5/9
8/9
5/9

 .

Therefore, the Gauss quadrature is given as∫ 1

−1
f(x)dx ≈ 5

9
f

(
−
√

3

5

)
+

8

9
f(0) +

5

9
f

(√
3

5

)
.
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List of classical orthogonal polynomials

• Legendre polynomials {Pn(x)}∞n=0: P0(x) = 1, P1(x) = x, and

Pn+1(x) =
2n+ 1

n+ 1
xPn(x)−

n

n+ 1
Pn−1(x), for n = 1, 2, · · · .

They are orthogonal in [−1, 1] with respect to the standard L2 inner product:∫ 1

−1
Pm(x)Pn(x)dx =

{
0 m 6= n

2
2n+1 m = n

.

• Chebyshev polynomials {Tn(x)}∞n=0: T0(x) = 1, T1(x) = x, and

Tn+1(x) = 2xTn(x)− Tn−1(x), for n = 1, 2, · · · .

They are orthogonal in [−1, 1] with respect to L2
w inner product with weight w(x) = 1√

1−x2 :

∫ 1

−1
Tm(x)Tn(x)

1√
1− x2

dx =


0 m 6= n

π m = n = 0
π
2 m = n 6= 0

.

• Laguerre polynomials {Ln(x)}∞n=0: L0(x) = 1, L1(x) = 1− x, and

Ln+1(x) =
2n+ 1− x
n+ 1

Ln(x)−
n

n+ 1
Ln−1(x), for n = 1, 2, · · · .

They are orthogonal in [0,∞) with respect to L2
w inner product with weight w(x) = e−x:∫ 1

−1
Lm(x)Ln(x)e

−xdx =

{
0 m 6= n

1 m = n
.

• Hermite polynomials {Hn(x)}∞n=0: H0(x) = 1, H1(x) = x, and

Hn+1(x) = xHn(x)− nHn−1(x), for n = 1, 2, · · · .

They are orthogonal in [−1, 1] with respect to L2
w inner product with weight w(x) = 1√

2π
e−

x2

2 :

∫ 1

−1
Hm(x)Hn(x)

(
1√
2π
e−

x2

2

)
dx =

{
0 m 6= n

n! m = n
.
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